if you really like our post please share it with your friends.
Apparetus- Scilab software, Laptop .
Algorithm-
1. Input all the values of h,m,k,r0,rm etc.
2. Define the command of linspace .
3. Define the zeros matrix of A and v of order (n*n) .
4. write the equation of matrix A i.e,A(i,[i-1:i+1])=[1,-2,1] .
5. write the given equation of matrix v i.e., v(i,i)=0 .
6. Find the value of H i.e., H=(((-h^2)/(2*m*d.^2)*A))+v
7. Find the eigen value of H using the spec(H) command .
8. Normalized the eigen function .
9. Using the subplot command and plot the graph .
INPUT-
h=1973//eV Angstrom
k=100//eV/Angstrom.^2
m=0.511e6//eV/c.^2
e=3.795//(eV Angstrom).^1/2
r0=0
rm=1 // A
n=200
a=1//Angstrom
r=linspace(r0,rm,n)
d=(rm-r0)/n
V=zeros(n,n)
A=zeros(n,n)
A(1,[1:2])=[-2,1]
A(n,[n-1:n])=[1,-2]
for i=2:n-1
A(i,[i-1:i+1])=[1,-2,1]
end
for i=1:n
V(i,i)=0
V1(i)=0
end
H=(((-h^2)/(2*m*d.^2)*A))+V
[y,V1]=spec(H)
disp(V1(1,1),"ground state energy")
disp(V1(2,2),"first state energy")
subplot(2,2,1)
plot(r,y(:,1)','b+')
xlabel('r -->','fontsize',3)
ylabel('$\psi (x)$','fontsize',3)
title('graph b/w psi(:,1) v/s r')
subplot(2,2,2)
plot(r,y(:,2)','r+')
xlabel('r -->','fontsize',3)
ylabel('$\psi (x)$','fontsize',3)
title('graph b/w psi(:,2) v/s r')
subplot(2,2,3)
plot(r,((y(:,1)).^2)','y+')
xlabel('r -->','fontsize',3)
ylabel('$\psi^{2} (x)$','fontsize',3)
title('graph b/w psi(:,1)^2 v/s r')
subplot(2,2,4)
plot(r,((y(:,2)).^2)','g+')
xlabel('r -->','fontsize',3)
ylabel('$\psi^{2} (x)$','fontsize',3)
title('graph b/w psi(:,2)^2 v/s r')
OUTPUT-
ground state energy
37.218773
first state energy
148.866
No comments:
Post a Comment