Friday, January 22, 2021

Aim- Define the following matrixes interpret the resuts-

 1. Find the eigen values and print the corresponding eigen vectors for


above matrix .

2. Are the eigen vector (c) normalized .

3. Show that for matrix ‘A’, sum of eigen value =trace of A and

product of eigen value=det of A .

4. Find and prove the nature of the above matrices or matrix (c) .

5. For matrix D show that eigen vectors are mutually orthogonal .

6. Show that for matrix D,inv(p)*D*p will give diagonal matrix with

diagonal element as eigen values .


Apparatus- Scilab software , Laptop .

Algorithm- 1. Input the all given matrix e.g.,A,B,C,D,E,F and

identity matrix .

2. Using the spec command for find the eigen values and

eigen vectors .

3. To normalized the eigen vectors of corresponding matrices

and display the values .

4. Using the sum and trace command for show sum of eigen

value is equal to trace of A.

5. Find the det of eigen value of A and det of A using the det

command .

6. Check the orthogonality of eigen vectors of matrix D.

7.Find the diagonal of the matrix D .

8. Tofind the nature of the matrices as determinant for

harmitian,orthogonal,symmetric and unitry etc.


INPUT-

A=[2 1 1;1 3 2;3 1 4]


B=[1 -%i 3+4*%i;%i 2 4;3-4*%i 4 3]

C=[2 -%i 2*%i;%i 4 3;-2*%i 3 5]

D=(1/3)*[1 2 2;2 1 -2;2 -2 1]

E=[-3 -7 -5;2 4 3;1 2 2]

F=1/sqrt(3)*[1 1+%i;1-%i -1]

I=[1 0 0;0 1 0;0 0 1]

[a,b]=spec(A)

disp(a,"eigen vector of A",b,"eigen values of A")

[c,d]=spec(B)

disp(c,"eigen vector of B",d,"eigen values of B")

[e,f]=spec(C)

disp(e,"eigen vector of C",f,"eigen values of C")

[g,h]=spec(D)

disp(g,"eigen vector of D",h,"eigen values of D")

[i,j]=spec(E)

disp(i,"eigen vector of E",j,"eigen values of E")

[k,l]=spec(F)

disp(k,"eigen vector of F",l,"eigen values of F")

for i=1:3

disp(norm(e(:,i)),"normalised of eigenvalue of C")

end

disp(trace(A),"trace of A")

disp(sum(b),"sum of eigen value of A")


disp(det(b),"det of eigen value of A")

disp(det(A),"det of A")

disp(g'*g,"eigen vector of D are mutually orthogonal")

disp(inv(g)*D*g,"digonal matrix of D")

Y1=B'

disp(B'


,"dagger of matrix B")


disp(B,"matrix of B")

disp("if B dagger is equal to B so it harmitian")

Y2=C'

disp(C'


,"dagger of matrix B")


disp(C,"matrix of B")

disp("if C dagger is equal to C so it harmitian")

Y3=D'

disp(D'


,"dagger of matrix B")


disp(D,"matrix of B")

disp("if D dagger is equal to D and D is real so it symmetric")

Y4=D'*D

disp("if transpose is equal to its inverse so D is also orthogonal

matrix")

disp(Y4)

Y5=F'

disp(F'


,"dagger of matrix F")


disp(F,"matrix of F")

disp("if F dagger is equal F so it harmitian")

Y6=F'*F

disp(Y6)

disp("dagger is equal to its inverse so F is also unitary matrix")


OUTPUT-

eigen values of A


6.095824 0. 0.

0. 1.452088 + 0.4336988i 0.

0. 0. 1.452088 - 0.4336988i


eigen vector of A

0.3243216 0.3899937 - 0.1875413i 0.3899937 + 0.1875413i

0.5849985 0.5379993 + 0.2718959i 0.5379993 - 0.2718959i

0.7433655 -0.6703451 -0.6703451


eigen values of B

-4.746829 0. 0.

0. 2.3968018 0.

0. 0. 8.3500273


eigen vector of B

-0.3404771 - 0.5212558i -0.2734105 + 0.5541666i -0.3192331 - 0.3586139i

-0.4539695 + 0.0504648i -0.3645474 - 0.6890355i -0.4256442 - 0.0502727i


0.6353997 0.1023784 -0.7653665


eigen values of C

-0.3871996 0. 0.

0. 3.6916109 0.

0. 0. 7.6955887


eigen vector of C

0.6662617i -0.7255184i 0.1723904i

0.5184148 0.6168052 0.5922816

-0.5360424 -0.3052448 0.7870731


eigen values of D

-1. 0. 0.

0. 1. 0.

0. 0. 1.


eigen vector of D

-0.5773503 -0.7634414 0.2895237

0.5773503 -0.1309858 0.8059214

0.5773503 -0.6324555 -0.5163978


eigen values of E

1.0000075 + 0.000013i 0. 0.

0. 1.0000075 - 0.000013i 0.

0. 0. 0.9999849


eigen vector of E

-0.9045338 -0.9045338 -0.9045344

0.3015128 + 0.0000026i 0.3015128 - 0.0000026i 0.3015085

0.3015105 - 0.0000013i 0.3015105 + 0.0000013i 0.301513


eigen values of F

-1. 0.

0. 1.

eigen vector of F

0.3250576 + 0.3250576i 0.627963 + 0.627963i

-0.8880738 0.4597008

normalised of eigenvalue of C

1.

normalised of eigenvalue of C

1.

normalised of eigenvalue of C

1.


trace of A

9.

sum of eigen value of A

9.

det of eigen value of A

14. + 4.441D-16i

det of A

14.

eigen vector of D are mutually orthogonal

1. 0. 1.244D-16

0. 1. 0.

1.244D-16 0. 1.


digonal matrix of D

-1. 0. -1.244D-16

0. 1. 0.

1.330D-16 0. 1.


dagger of matrix B

1. -i 3. + 4.i

i 2. 4.

3. - 4.i 4. 3.


matrix of B

1. -i 3. + 4.i

i 2. 4.

3. - 4.i 4. 3.


if B dagger is equal to B so it harmitian


dagger of matrix C

2. -i 2.i

i 4. 3.

-2.i 3. 5.


matrix of C

2. -i 2.i

i 4. 3.

-2.i 3. 5.

if C dagger is equal to C so it harmitian


dagger of matrix D


0.3333333 0.6666667 0.6666667

0.6666667 0.3333333 -0.6666667

0.6666667 -0.6666667 0.3333333


matrix of D

0.3333333 0.6666667 0.6666667

0.6666667 0.3333333 -0.6666667

0.6666667 -0.6666667 0.3333333

if D dagger is equal to D and D is real so it symmetric


if transpose is equal to its inverse so D is also orthogonal matrix

1. 0. 0.

0. 1. 0.

0. 0. 1.


dagger of matrix F

0.5773503 0.5773503 + 0.5773503i

0.5773503 - 0.5773503i -0.5773503


matrix of F

0.5773503 0.5773503 + 0.5773503i

0.5773503 - 0.5773503i -0.5773503


if F dagger is equal F so it harmitian

1. 0.

0. 1.

dagger is equal to its inverse so F is also unitary matrix

No comments:

Post a Comment

Aim- Define the following matrixes interpret the resuts-

 1. Find the eigen values and print the corresponding eigen vectors for above matrix . 2. Are the eigen vector (c) normalized . 3. Show that...